

LESS AGE-SPECIFIC RELATIONSHIP, EPILEPSIES ATTRIBUTED TO AND ORGANIZED BY STRUCTURAL-METABOLIC CAUSES, AND DISTINCTIVE CONSTELLATIONS

John M. Schreiber, MD Medical Director, EEG Children's National Health System

DISCLOSURES

- Disclosure of Financial Relationships Consultant – Neurocrine Biosciences Speaker Bureau – Zogenix, Inc and Marinus Pharmacueticals
- Off-Label Usage None

ILAE Proposed Epilepsy Classification

Table 3. Electroclinical syndromes and other epilepsies Electroclinical syndromes arranged by age at onset ^a Neonatal period Benign familial neonatal epilepsy (BFNE) Early myoclonic encephalopathy (EME) Ohtahara syndrome Infancy Epilepsy of infancy with migrating focal seizures West syndrome Myoclonic epilepsy in infancy (ME) Benign familial infantile epilepsy Benign familial infantile epilepsy Dravet syndrome Myoclonic encephalopathy in nonprogressive disorders Childhood Febrile seizures plus (FS+) (can start in infancy) Panayiotopoulos syndrome Epilepsy with myoclonic atonic (previously astatic) seizures Benign epilepsy with centrotemporal spikes (BECTS)	Distinctive constellations Mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE with HS) Rasmussen syndrome Gelastic seizures with hypothalamic hamartoma Hemiconvulsion-hemiplegia-epilepsy Epilepsies that <i>do not</i> fit into any of these diagnostic categories can be distinguished first on the basis of the presence or absence of a known structural or metabolic condition (presumed cause) and then on the basis of the primary mode of seizure onset (generalized vs. focal) Epilepsies attributed to and organized by structural-metabolic causes Malformations of cortical development (hemimegalencephaly, heterotopias, etc.) Neurocutaneous syndromes (tuberous sclerosis complex, Sturge-Weber, etc.) Tumor Infection Trauma
Benign epilepsy with centrotemporal spikes (BECTS) Autosomal-dominant nocturnal frontal lobe epilepsy (ADNFLE) Late onset childhood occipital epilepsy (Gastaut type) Epilepsy with myoclonic absences Lennox-Gastaut syndrome	Angioma Perinatal insults Stroke
Epileptic encephalopathy with continuous spike-and-wave during sleep (CSWS) ^b Landau-Kleffner syndrome (LKS) Childhood absence epilepsy (CAE) Adolescence – Adult Juvenile absence epilepsy (JAE)	Etc. Epilepsies of unknown cause Conditions with epileptic seizures that are traditionally not diagnosed as a form of epilepsy per se Benign neonatal seizures (BNS) Febrile seizures (FS)
Juvenile myoclonic epilepsy (JME) Epilepsy with generalized tonic-clonic seizures alone Progressive myoclonus epilepsies (PME) Autosomal dominant epilepsy with auditory features (ADEAF) Other familial temporal lobe epilepsies Less specific age relationship	^a The arrangement of electroclinical syndromes does not reflect etiology. ^b Sometime referred to as Electrical Status Epilepticus during Slow Sleep (ESES).
Familial focal epilepsy with variable foci (childhood to adult) Reflex epilepsies	

ILAE 2022 Classification and Definitions

Received: 23 April 2021 Revised: 11 March 2022

Accepted: 16 March 2022

DOI: 10.1111/epi.17237

SPECIAL REPORT

Epilepsia

Methodology for classification and definition of epilepsy syndromes with list of syndromes: Report of the ILAE Task Force on Nosology and Definitions

Elaine C. Wirrell¹ Rima Nabbout^{2,3} Ingrid E. Scheffer⁴ Taoufik Alsaadi⁵ Alicia Bogacz⁶ | Jacqueline A. French⁷ Edouard Hirsch⁸ | Satish Jain⁹ | Sunao Kaneko¹⁰ | Kate Riney^{11,12} Pauline Samia¹³ O | O. Carter Snead¹⁴ | Ernest Somerville¹⁵ Nicola Specchio¹⁶ | Eugen Trinka^{17,18,19} | Sameer M. Zuberi^{20,21} | Simona Balestrini^{22,23,24} | Samuel Wiebe²⁵ | J. Helen Cross^{26,27} | Emilio Perucca^{28,29} | Solomon L. Moshé³⁰ | Paolo Tinuper^{31,32}

> Overview

Overview

Choose a language

Log In For Videos

Generalized onset seizure

Focal Onset Seizure

Epilepsy Classification Generalized Epilepsy

Focal Epilepsy

Epilepsy

Childhood

Any Age

Unknown Onset Seizure

Generalized and Focal

Unknown Epilepsy Epilepsy Syndromes

Neonatal/Infantile

Adolescent/Adult

Epilepsy Etiologies Genetic Etiology

Structural Etiology

Metabolic Etiology

Immune Etiology

Infectious Etiology

Unknown Etiology Epilepsy imitators

Give Feedback Seizure Classification EpilepsyDiagnosis.org

Diagnostic Manual

EpilepsyDiagnosis.org

The ILAE welcomes you to EpilepsyDiagnosis.org, a cutting edge online diagnostic manual of the epilepsies.

Goal

The goal of *epilepsydiagnosis.org* is to make available, in an easy to understand form, latest concepts relating to seizures and the epilepsies. The principle goal is to assist clinicians who look after people with epilepsy anywhere in the world to diagnose seizure type(s), epilepsy type, diagnose epilepsy syndromes and define the etiology of the epilepsy. The site is principally designed for clinicians in primary and secondary care settings caring for people with epilepsy and we hope will also serve as a useful teaching aid.

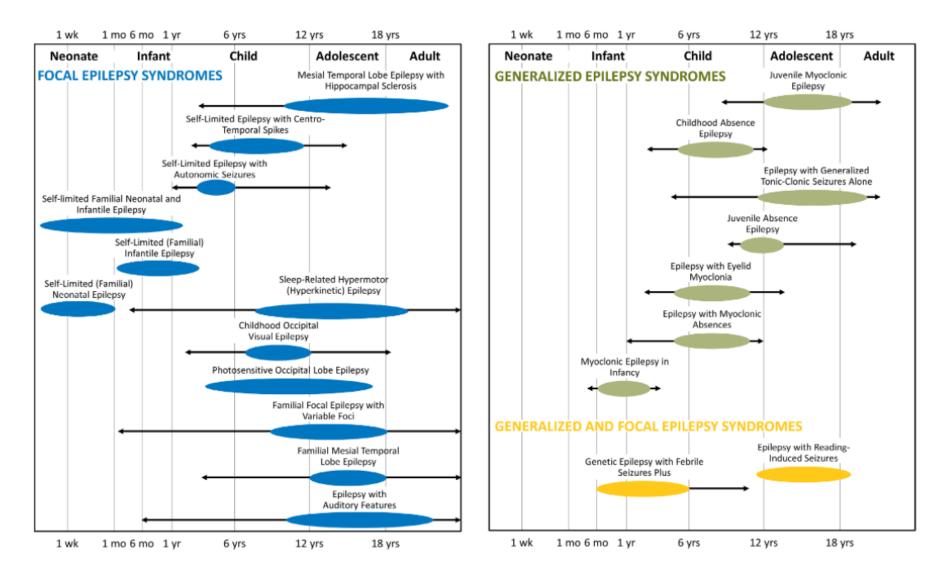
Structure

The structure of this site reflects the importance of seizure type, epilepsy type, syndrome, and etiology in clinical practice. On this website, you will find current classification concepts for seizures, with their clinical features, video examples, EEG correlate, differential diagnosis and related epilepsy type, epilepsy syndrome and etiology. Epilepsy syndromes are detailed by their clinical features, seizure types, EEG, imaging and genetic correlates and differential diagnoses. The site includes sections on etiologies of epilepsies and epilepsy imitators with cross-referencing between these sections and seizure and syndrome sections.

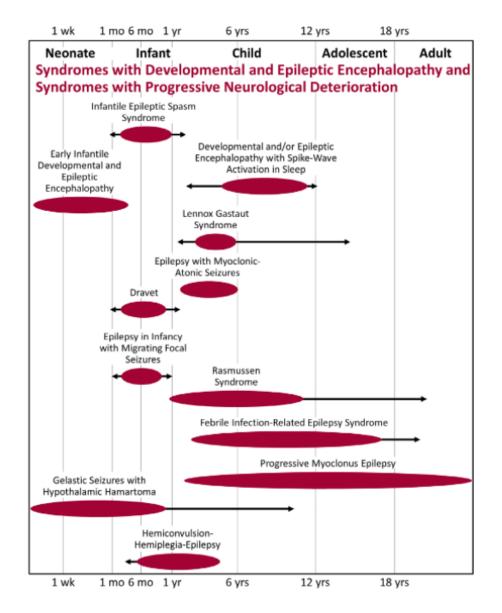
Videos

A short and instantaneous registration process is required to view videos on this site, and this is open to anyone, anywhere in the world with an internet connection. Individuals with seizures or epilepsy imitating conditions and their families have kindly given consent for videos to be freely available in this way.

Further development


You will notice that there are some sections that do not have video examples as yet, notably *Epilepsy Imitators*, and some text sections that require expansion. The ILAE will continue to develop EpilepsyDiagnosis.org and add further videos and text over time.

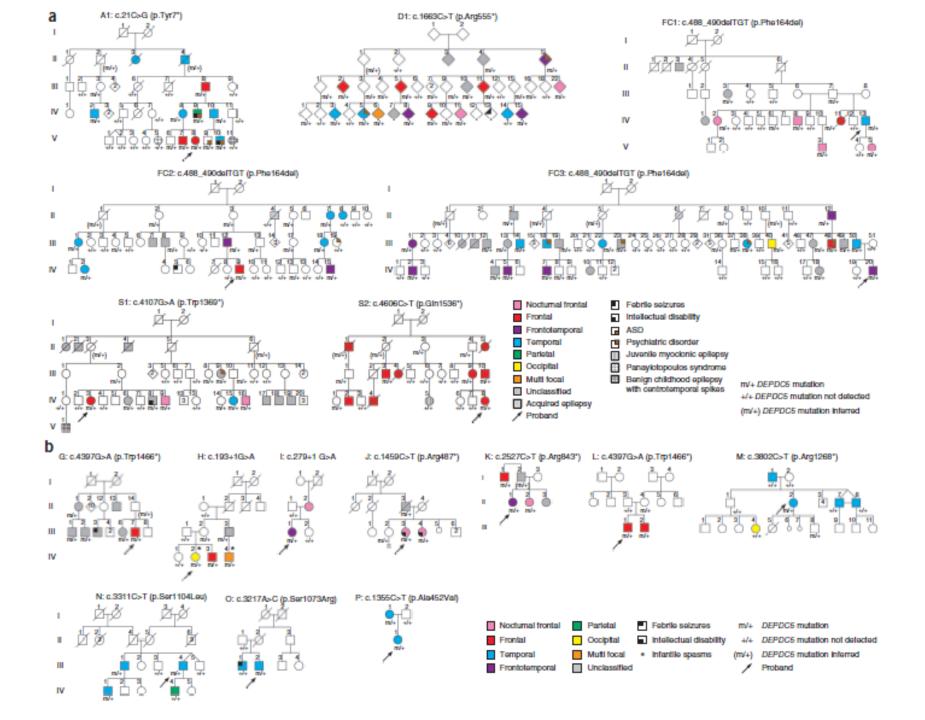
Please have a look EpilepsyDiagnosis.org, use it for your own education, for teaching and let colleagues, patients and families know about the resources on this site. We would be very grateful if you could complete the survey on the Give Feedback page. This will help us in our further development of this continually evolving site. Future plans include developing continuing medical education (CME) packages linked to the site and providing downloadable information for people with epilepsy, their families and carers.


Acknowledgement

The website has been developed in partnership with eResearch at the University of Melbourne, Australia.

ILAE 2022 Classification and Definitions

ILAE 2022 Classification and Definitions



Less Specific Age Relationship

- Familial focal epilepsy with variable foci *DEPDC5*
- Reflex epilepsies

Mutations in *DEPDC5* cause familial focal epilepsy with variable foci

Leanne M Dibbens^{1,2,23}, Boukje de Vries^{3,23}, Simona Donatello⁴, Sarah E Heron^{1,2}, Bree L Hodgson¹, Satyan Chintawar⁴, Douglas E Crompton^{5,6}, James N Hughes⁷, Susannah T Bellows⁶, Karl Martin Klein^{6,8}, Petra M C Callenbach⁹, Mark A Corbett¹⁰, Alison E Gardner¹⁰, Sara Kivity¹¹, Xenia Iona¹, Brigid M Regan⁶, Claudia M Weller³, Denis Crimmins¹², Terence J O'Brien¹³, Rosa Guerrero-López¹⁴, John C Mulley^{7,15,16}, Francois Dubeau¹⁷, Laura Licchetta¹⁸, Francesca Bisulli¹⁸, Patrick Cossette¹⁹, Paul Q Thomas⁷, Jozef Gecz^{7,16}, Jose Serratosa¹⁴, Oebele F Brouwer⁹, Frederick Andermann¹⁷, Eva Andermann¹⁷, Arn M J M van den Maagdenberg^{3,20}, Massimo Pandolfo⁴, Samuel F Berkovic⁶ & Ingrid E Scheffer^{6,21,22}

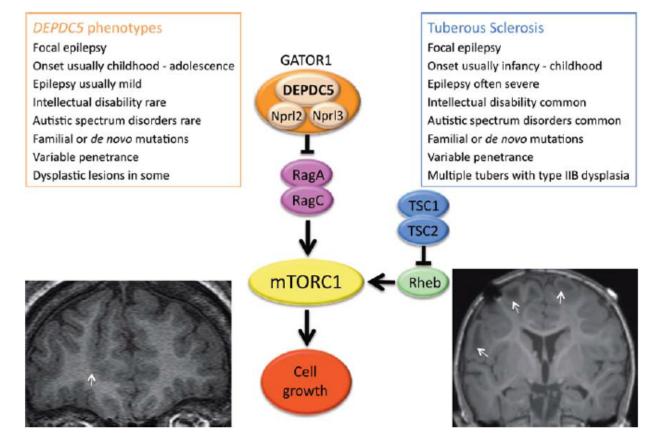
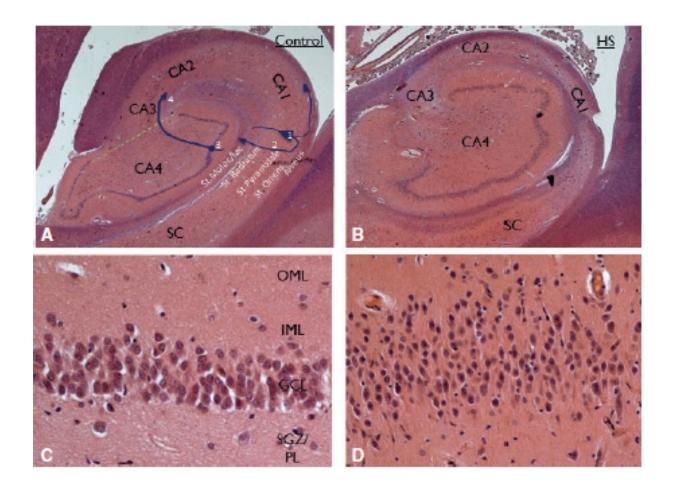
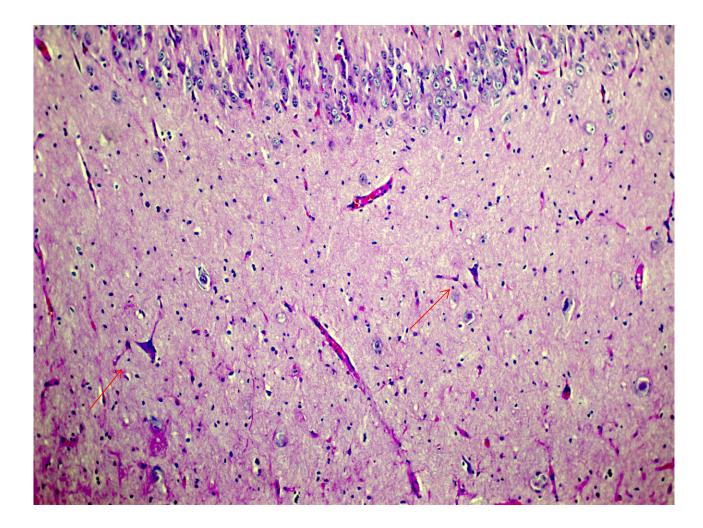


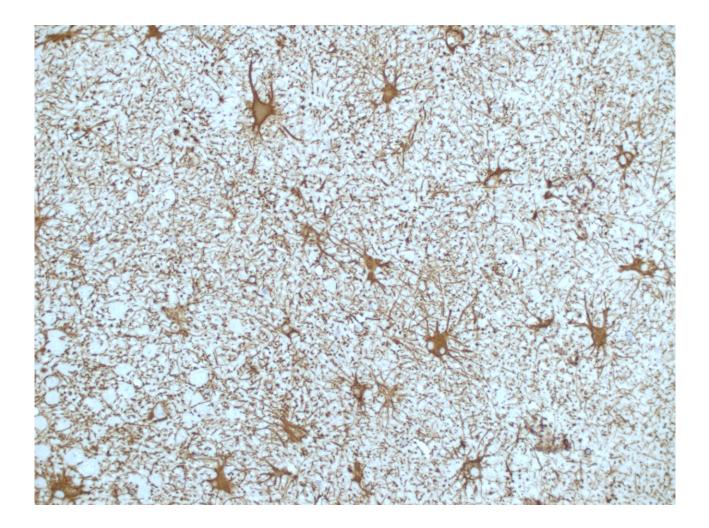
FIGURE 2: *DEPDC5* mutations and tuberous sclerosis show overlapping phenotypes and imaging abnormalities associated with activation of the mammalian target of rapamycin (mTOR) pathway.¹¹

Reflex epilepsies

- Visual/photosensitive
- Eye closure sensitivity usually repeated eyelid fluttering (ie Jeavons)
- Orofacial reflex myoclonia (brought on by reading, talking, eating)
- Praxis induction muscle jerks induced by visual motor tasks
- Hot water (India, Japan)
- Musicogenic epilepsy
- Tactile
- Tooth brushing
- Math
- Etc


Distinctive Constellations


- Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis
- Rasmussen Syndrome
- Gelastic with hypothalamic hamartoma
- Hemiconvulsion-hemiplegia epilepsy
- [Progressive Myoclonic Epilepsies]
- Other epilepsies that can be classified based on presence of absence of structural or metabolic cause and focal or generalized onset


Hippocampal Sclerosis

- Neuronal loss in the pyramidal cell layer
 - Classical HS neuronal loss primarily involving CA1 > CA4 with relatively preserved subiculum and CA2 and variable loss from CA3
- Granule cell dispersion
- Mossy fiber sprouting
- Chronic fibrillary gliosis
- Altered interneurons
- "HS Plus"/ MTS
- "Dual" pathology FCD IIIa, low-grade tumors (DNETs, gangliogliomas), vascular and cortical malformations

Histology

History of Hippocampal Sclerosis

- HS is the most common pathologic finding in adult epilepsy surgery
- Ammon's horn sclerosis linked to epilepsy Sommer (1880) and Bratz (1899)
 - Neuronal loss largely restricted to CA1 (cornu ammonis)
- Jackson & Beevor (1889) associated clinical symptoms of TLE with focal lesions in hippocampus
- Sano and Malamud (1953) associated HS with EEG evidence of TLE
- Jackson et al., 1990; Berkovic et al., 1991 recognized that MRI can detect HS

Hippocampal Sclerosis in Temporal Lobe Epilepsy Demonstrated by Magnetic Resonance Imaging

Samuel F. Berkovic, MD, Frederick Andermann, MD, André Olivier, MD, Roméo Ethier, MD, Denis Melanson, MD, Yvon Robitaille, MD, Ruben Kuzniecky, MD, Terence Peters, PhD, and William Feindel, MD

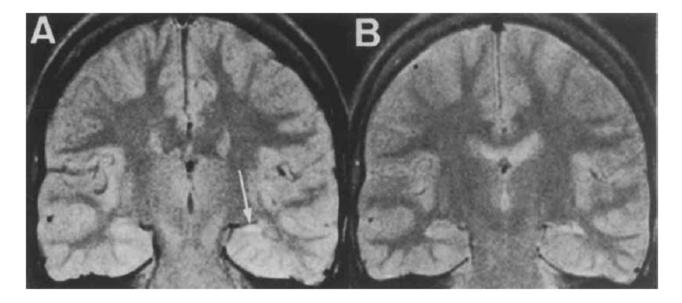
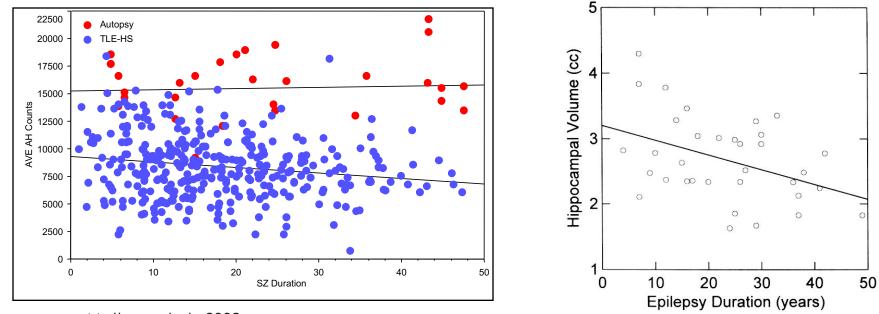


Fig 3. Magnetic resonance imaging, Patient 10. (A) First echo image. The left bippocampus (arrow) is severely shrunken with slightly increased signal compared with the left. (B) Second echo image. The asymmetry in the hippocampal signals is better appreciated; the abnormal left hippocampus can be resolved from the adjacent high signal of the temporal horn.

MRI features of HS

- T2 hyperintensity (hippocampal hyperintense FLAIR signal occurs in about 1/3 of normal controls (Labate et al., 2010) but is not associated with hippocampal atrophy
- Reduced hippocampal volume
- Disturbed internal architecture
- Others
 - Temporal lobe atrophy
 - Dilatation of the temporal horn
 - Blurring of the gray-white junction


Labate A, Gambardella A, Aguglia U, et al. Temporal lobe abnormalities on brain MRI in healthy volunteers: a prospective case-control study. Neurology 2010, 74: 553-557.

Temporal Lobe Epilepsy and HS/ MTS

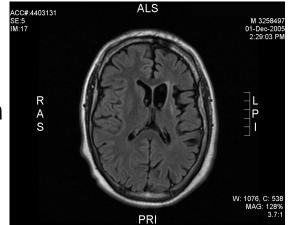
• Kim et al., 1999 – 104 patients with MTS followed for > 2 years

- 25% completely controlled with adequate therapy
- 37% had ≥50% reduction in seizures
- 38% intractable
- Kobayashi et al., 2001 98 patients with epilepsy (68 with MTLE); HS in 48/84 (57%) who had MRI; proportion of HS in MTLE outcome groups
 - 6/13 (46%) remission
 - 16/31 (51%) good seizure control
 - 16/16 (100%) with refractory MTLE

HS and Epilepsy Duration

Mathern et al., 2002

Theodore et al., 1999


Rasmussen Syndrome

- Mean age of onset 5 years, most 14 months 14 years
- Seizures are the initial manifestation GTC, focal motor, complex partial
- Epilepsia partialis continua in 56%
- Progressive hemiparesis and usually cognitive deterioration
- Prodromal period \rightarrow acute phase \rightarrow residual stage
- Neuroimaging progressive hemispheric atrophy
- CSF oligoclonal or monoclonal bands
- Pathology chronic inflammatory changes with intense perivascular cuffing, microglia, astrocytosis, neuronal cell loss
- Treatment:
 - Medical
 - Hemispherectomy could be considered earlier to limit dysfunction in the contralateral hemisphere

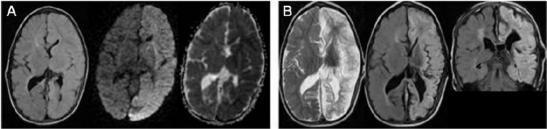
Rasmussen Syndrome: Diagnosis

Part A (3/3):

- 1.Clinical: Focal seizures (+/- Epilepsia partialis continua) & Unilateral cortical deficit(s)
- 2.EEG: Unihemispheric slowing +/- epileptiform activity & Unilateral seizure onset
- 3.MRI: Unihemispheric focal cortical atrophy and at least one of the following:

Grey or white matter T2/FLAIR hyperintense signal Hyperintense signal/atrophy of ipsilateral caudate head

Part B (2/3):


- 1. Clinical: Epilepsia partialis continua or <u>Progressive</u> unilateral cortical deficit(s)
- MRI: <u>Progressive</u> unihemispheric focal cortical atrophy
 Histopathology: T cell dominated encephalitis w/activated microglial cells (typically, but not necessarily forming nodules) & reactive astrogliosis

Gelastic seizures with hypothalamic hamartoma

- Classic description: gelastic seizures ("mirthless laughter"), other seizure types (focal or generalized), crying-like sounds
- Precocious puberty
- Cognitive problems and decline
- Behavior problems: hyperactivity, rage, aggression, oppositional defiant disorder, ADHD, conduct disorder, affective disorders
- EEG findings highly variable (incl normal) and seizures may appear to arise from various locations; some with temporal lobe dysplasia
- HH has intrinsic epileptogenicity
- Drugs ineffective; surgery usually effective

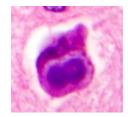
Hemiconvulsion-hemiplegia-epilepsy

- Onset: 85% 6 months-4 years old
- Classic description: initial prolonged focal/generalized status epilepticus, then hemiplegia (may resolve in < 12 months in 20%)
- Radiologic: acute cytotoxic edema followed by chronic atrophy
- Decreasing incidence due to better early seizure control? (1967 – 7.5/10,000; 1978 – 1.6/10,000)
- Subtypes
 - "Idiopathic" fever, extracranial infection
 - "Symptomatic" associated with other pathology (trauma, infection, stroke)

Tenney & Schapiro, Neurology 2012;79:e1

Progressive myoclonus epilepsies (PME)

- Myoclonus, Epilepsy (GTC, CTC, C, others), dementia, usually with cerebellar manifestations
- <1% of epilepsies (Genton et al, in Roger) 2273 total newly referred epilepsy cases
- Unvericht-Lundborg disease (Baltic myoclonus)- 63
- Lafora disease 41
- Neuronal ceroid lipofuscinosis 15
- Myoclonic epilepsy with ragged red fibers (MERRF) 2
- Also: other mitochondrial disorders, sialidosis, dentatorubral-pallidoluysian atrophy, biotinidase deficiency, Gaucher's type III, Huntington disease, pantothenate kinase-associated neurodegeneration, subacute sclerosing panencephalitis, Creutzfeld-Jacob disease


EPM1 & 2

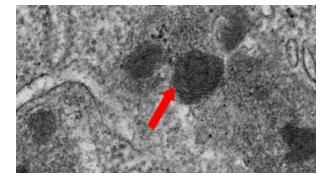
Unvericht-Lundborg syndrome

- Autosomal recessive
- Chromosome 21q22
- Cystatin B
- Present at 6-18 yrs (mostly 9-13 yrs) but survive to adulthood
- Myoclonus before ataxia and dementia
- Cognitive impairment nil-moderate

Lafora disease (EPM2)

- Autosomal recessive
- Chromosome 6
- Laforin (EPM2A) or malin (EPM2B)
- Present at 6-19 yrs and have a rapid decline
- Seizures, visual seizures (~50%), then ataxia and dementia
- Very photosensitive
- Death in 2-10 yrs

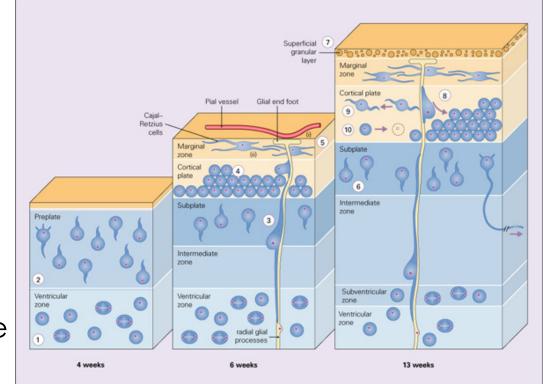
Neuronal ceroid lipofuscinosis (NCL)


- Variable ages of onset
- Seizures, visual changes, ataxia, cognitive decline
- EEG: typically, background becomes abnormal over time, epileptiform activity, photosensitivity with giant evoked potentials
- Imaging: progressive atrophy
- Genetics (next slide): autosomal recessive but CLN4 is dominant
- Diagnosis: genetics or biopsy of axilla (sweat glands), muscle, conjunctiva, rectum

Neuronal ceroid lipofuscinosis (NCL)

Gene	Age of onset	Chromosome	Protein	Ultrastructure
CLNI	Infantile, but also late-infantile, juvenile, and adult	Ip32	PPTI	Granular osmiophilic deposits (GRODS)
CLN2	Late-infantile, but also juvenile	llp15	TPPI	Curvilinear profiles
CLN3	Juvenile	16p12	Lysosomal transmembrane protein	Fingerprint profiles
CLN4	Adult (Parry)	20q13.33	Cysteine string protein	Rectilinear profiles
(DNAJC	5)			
CLN5	Late-infantile (Finnish variant)	I3q22	Soluble lysosomal protein	Rectilinear profiles, curvilinear profiles, fingerprint profiles
CLN6	Late-infantile Adult (Kufs Type A)	15q21	Transmembrane protein of ER	Rectilinear profiles, curvilinear profiles, fingerprint profiles
CLN7	Late-infantile, Turkish variant	4q28	MFSD8, lysosomal membrane protein	Fingerprint profiles
CLN8	Late-infantile, Northern epilepsy	8q23	Transmembrane protein of ER	Curvilinear profiles
CLN10	Congenital	llp15	Cathepsin D	GRODS?

Abbreviations: ER, endoplasmic reticulum; GRODS, granular osmiophilic deposits; NCLs, neuronal ceroid lipofuscinoses.


Mink et al., J Child Neurol 2013;28:1101 Schultz et al., Biochim Biophys Acta 2013;1832:1801 beyondbatten.org/understanding-batten/diagnosis-symptoms/

Epilepsies attributed to and organized by structural-metabolic cause

- Malformations of cortical development
- Neurocutaneous syndromes
- Tumor
- Infection
- Trauma
- Angioma/ vascular (cavernoma, AVM)
- Perinatal insults
- Stroke
- Metabolic/ Mitochondrial

Cerebral Cortex Embryology

- Week 7: proliferation of neuroblasts in the germinal matrix
- Week 8: radial migration begins
- Migration along radial glial cells (dependent on recognition, attachment, and calcium entry/ NMDA activation)
- Neurons migrate in an inside out sequence (except for layer 1 – molecular layer)

Ellison & Love: Neuropathology 2e © 2004 Elsevier Ltd.

Etiology of MCD

- Mutations
 - Stem cell production
 - Radial glial fascicle development
 - Neuronal migration
 - Ability to disengage from radial glial fascicle and organize
- Destructive events
 - Infection
 - Ischemia
- Exogenous/ endogenous toxins
 - Drugs/ alcohol
 - Metabolic disorders (PDH deficiency, NKH)

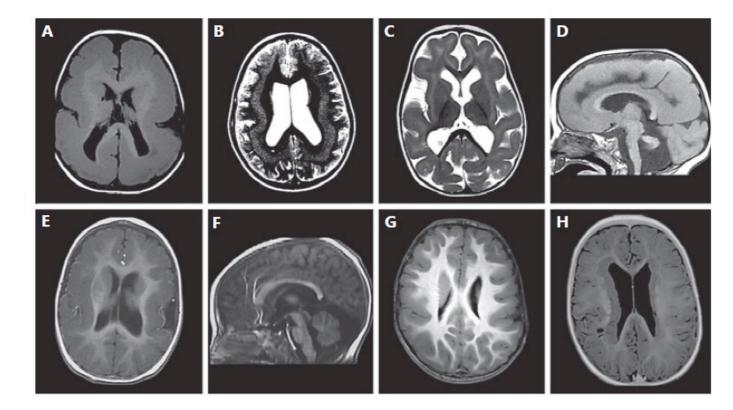
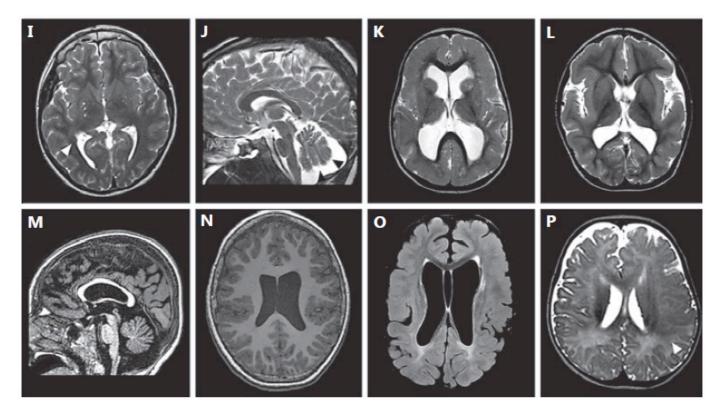
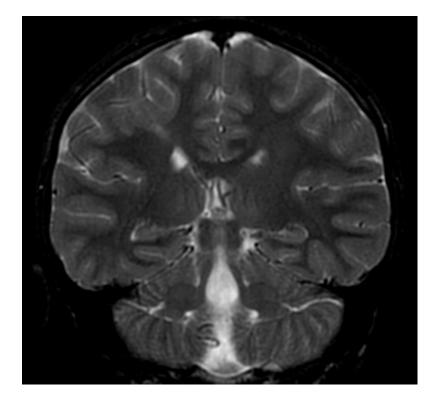



Fig. 1. Brain MRI of patients with different malformations of the cerebral cortex. A T1-weighted axial section. Posterior to anterior pachygyria in a boy with *LIS1* mutation. B T2-weighted axial section. Diffuse SBH in a girl with *DCX* mutation. C, D T2-weighted axial section and T1-weighted sagittal section. Lissencephaly and cerebellar hypoplasia in a girl with *RELN* mutation. E, F T1-weighted axial section and T1-weighted sagittal section. Thickened cortex with simplified gyral pattern and cerebellar hypoplasia in a girl with *TUBA1A* mutation. G T1-weighted axial section. Diffuse simplified gyral pattern with prominent thickening and infolding of the sylvian fissures in a boy with *TUBB2B* mutation. H T1-weighted axial section. Typical, classical bilatera PNH n a girl with an *FLNA* mutation. Bilateral nodules of subependymal heterotopia are contiguous and rather symmetric, extensively lining the ventricular walls.

Mol Syndromol 2016;7:220-233 DOI: 10.1159/000448639

MCD


I, J T2-weighted axial section showing mild colpocephaly with unilateral PNH (white arrowhead) and T2-weighted sagittal section through the midline, showing cerebellar vermis hypoplasia (black arrowhead) with mega cisterna magna in a patient carrying a deletion in the 6q27 chromosomal region. K T2-weighted axial section. Bilateral frontoparietal polymicrogyria in a boy with *GPR56* mutation. L, M T2-weighted axial section and T1-weighted coronal section. Pachygyria and perisylvian polymicrogyria in a girl with *DYNC1H1* mutation. N Axial T1-weighted section in a patient with a mosaic *PIK3R2* mutation. O, P T1-weighted and T2-weighted axial images form patients carrying mosaic mutations in the *MTOR* gene with different percentages of mosaicism [O: p.Thr1977Ile, 20% of mosaicism in blood, P: p.Ser2215Phe, 5.5% of mosaicism in dysplastic brain tissue) showing bilateral cortical dysgyria (O) and focal cortical dysplasia (P, white arrowhead)].

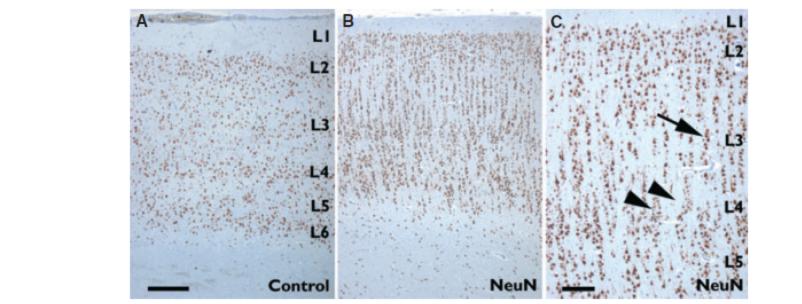
MCD Type	Group	Associated Genes	Associated Pathways and etiology	Imaging Findings
Microcephaly	Group I	MCPHI, CENPJ, CDK5RAP2, WDR62, NDE1, NDE1, ASPM, CDK5RAP2, TUBA1A, TUBB2B, TUBB3, TUBG1, LIS1, DCX, DYNC1H, KIF5C, NDE1	Neurogenesis and cell replication, tubulin and microtubule- associated proteins (MAP)	Small head size, small cerebellum and pons and lissencephaly (with tubulin and MAP-associated genes)
Megalencephaly spectrum	Group I	AKT3, PIK3CA, and PIK3R2	mTOR	Focal (localized), hemispheric or diffuse cortical enlargement, cerebellum and deep gray nuclei also enlarged, gray/white boundary blurring
FCD type IIa	Group I	MTOR, DEPDC5,and PIK3CA	mTOR	Gray/white matter blurring with apparent cortical thickness
FCD type IIb	Group I	MTOR, DEPDC5, NPRL3	mTOR	Cortical/sulcal T2 hyperintensity may extend to ventricular surface (transmantle sign)
Tubulinopathies	Group II	TUBA1A, TUBB2B, TUBB3, TUBG1, LIS1, DCX, DYNC1H, KIF5C, NDE1	Microtubule structure and function	Microcephaly, lissencephaly, fused basal ganglia (BG), cortical dysgyria, callosal abnormalities, asymmetric brainstem and small cerebellar vermis
Variant lissencephalies	Group II	ARX, DCX, RELN and VLDR	Reelin	ARX -Lissencephaly, callosal abnormalities, dysmorphic BG, hydrancephaly Reelin – lissencephaly in anterior-posterior gradient, cortical thicknening, small cerebellum and vermis
Gray matter heterotopia	Group II	FLNA and ARFGEF2	Neuroependyma/neuroepitheliium	Normal gray matter in abnormal locations
Cobblestone malformations	Group II	GPR56, LAMB1, LAMB2, LAMC3 and SRD5A3	Dystroglycanopathies affecting pial limiting membrane	Lissencephaly/pachygyria or polymicrogyria (PMG), possible cerebellar involvement
Polymicrogyria (PMG)	Group III	1p36.3 and 22q11.2 mutations, mTOR genes	Etiology can be from prenatal ischemic, teratogenic or infectious brain injury	Perisylvian bilateral PMG (most common), associated with schizencephaly

Genetic and imaging findings associated with MCDs

Focal Cortical Dysplasia

- Altered cell morphology
- Altered synaptic connectivity/ disrupted cytoarchitecture
- Changes in ion channel or neurotransmitter receptor expression

FCD Classification Schema (ILAE)


TABLE 1. The histopathology-based FCD classification update (new categories highlighted ingray)

FCDI a	FCDIa abundant microcolumns	FCDIb abnormal layering	FCDIc vertical and h	norizontal abnormalities		
FCDII	FCDIIa dysmorphic ne	FCDIIa dysmorphic neurons		FCDIIb dysmorphic neurons and balloon cells		
FCDIII	FCDIIIa cortical dyslamination associated with hippocampal sclerosis	FCDIIIb cortical dyslamination adjacent to brain tumor	FCDIIIc cortical dyslamination adjacent to vascular malformation	FCDIIId cortical dyslamination adjacent to lesion acquired during early life, e.g. stroke		
White Matter ^{<i>a</i>}	mMCD b with excessive heterotopic neurons		mMCD with oligodendroglial hyperplasia in epilepsy (MOGHE)			
No definite FCD on a histopathology	Abnormality of cortica compatible with FCDI,	d	ambiguous and histop	oathological findings not		

Najm et al., Epilepsia 2022


FCD la

Epilepsia, 52(1):158–174, 2011 doi: 10.1111/j.1528-1167.2010.02777.x

Figure 1.

Histopathologic findings in FCD Type Ia (abnormal radial lamination and abundant microcolumns). Eleven-year-old girl with a 10-year history of drug-resistant seizures. (A) Normal appearing neocortex adjacent to the lesion shown in **B** and **C**. Selective labeling of neuronal cell bodies using antibodies directed against NeuN reveals a characteristic layering of the human isocortex (L1–L6). Scale bar = 500 μ m, applies also to **B**. (**B**) Distinct microcolumnar arrangements of small diameter neurons can be detected in FCD Type Ia, when surgical specimen is cut perfectly perpendicular to the pial surface and 4- μ m paraffin embedded sections were used. MRI showed smaller cortical (parietooccipitotemporal) lobes in affected versus nonaffected hemispheres (Blumcke et al., 2010). High magnification in **C** reveals abundant microcolumns, which are composed of more than eight neurons (arrow). In addition, layer 4 is less clearly visible (arrowheads). Scale bar = 200 μ m. *Epilepsia* (**C**) ILAE

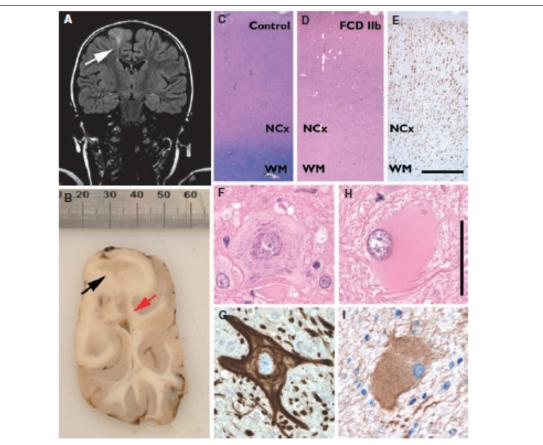
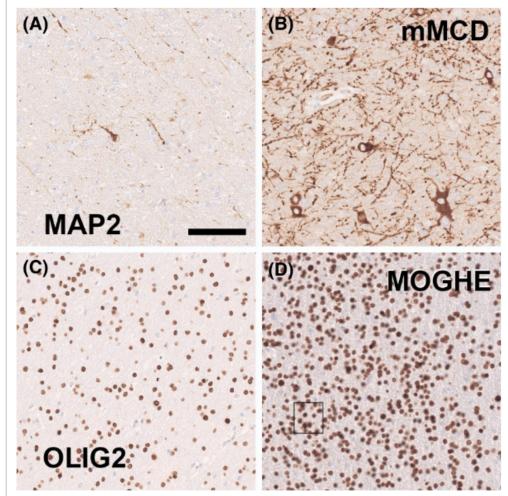


Figure 3.

lla

Imaging and histopathologic findings in FCD Type IIa. FCD Type IIa in an 18-year-old female patient with refractory seizures from age 5 years that would start with sensory disturbance in the left foot. (A) ¹⁸F-FDG-PET showing an area of slight hypometabolism in the superior, medial right parietal lobe (arrowhead). (B) Coronal T₂-FLAIR did not reveal definitely abnormal signal intensities. (C) Coronal T₁-weighted MRIs were also reported normal. Please note the different orientation of the planes of the PET and MR images. The MRI is oblique coronal, so that the inferior part of the image is posterior to that seen on the PET. (D) Microscopic inspection of surgical specimen revealed severe cortical dyslamination (arrow) without distinguishable layer formation (except layer 1). NeuN immuno-histochemistry. Scale bar = 1000 μ m. Section thickness = 15 μ m. (E) Abundant dysmorphic neurons with dense accumulation of dysmorphic neurons (arrows) depicted from same area shown in E (H&E stain). Note their variable morphologic appearance, which may also result from plane of sectioning. No balloon cells can be recognized. Scale bar = 30 μ m. Section thickness = 4 μ m. *Epilepsia* © ILAE

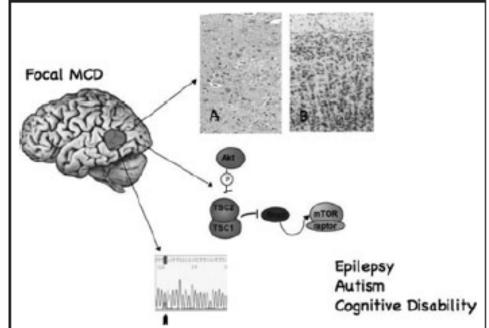
llb


Figure 4.

Imaging and histopathologic findings in FCD Type IIb. (**A**) The "transmantle-sign" in T₂-FLAIR imaging is characterized by a funnel-like hyperintensity (arrow) tapering from the gyrus to the ventricle. (**B**) Inspection of the surgical specimen reveals a distinct correlation between T₂-FLAIR hyperintensity and lack of normal myelin content (black arrow points to grayish subcortical areas), which can be identified from the subcortical white matter to the ventricle (red arrow). (**C**) H&E staining combined with Luxol-Fast-Blue (H&E-LFB) allows visualization of a sharp boundary between neocortex (NCX) and white matter (WM) in a control subject. (**D**) H&E-LFB. In this FCD Type IIb specimen, the myelin content is significantly reduced (see also macroscopic image in B). (**E**) NeuN immunohistochemistry, 4-µm paraffin embedded serial section to **D**. Severe cortical dyslamination is visible (with the exception of layer 1). In addition, cortical thickness is increased and not distinguishable from WM border (same magnification as **C** and **D**). Scale bar = 1 mm. (**F**) In FCD Type IIb, enlarged dysmorphic neurons present with a huge nucleus and abnormal intracytoplasmic Nissl aggregates. (**G**) Antibodies to nonphosphorylated neurofilament proteins (SMI32) reveal aberrant NFP accumulation in a dysmorphic neuron. (**H**) Balloon cells are another hallmark of this FCD variant. Scale bar = 50 µm, applies also to **F**, **G**, and **I**. (**I**) Balloon cells express the intermediate filament vimentin. **E**, **G**, and **I**: 4-µm paraffin-embedded sections, counterstained with hematoxylin. *Epilepsia* @ILAE

Epilepsia, 52(1):158–174, 2011 doi: 10.1111/j.1528-1167.2010.02777.x

mMCD and MOGHE


- mMCD (mild malformatic of cortical development)
 – excess heterotopic neurons in WM
- MOGHE (mMCD with oligodendroglial hyperplasia in epilepsy) – increase in heterotopic neurons in WM and high oligodendroglial cell density; 45-100% have SLC35A2 somatic variant

Najm et al., Epilepsia 2022

mTOR, TSC, and FCD type IIb

- Loss of function mutations in TSC1 or TSC2 lead to constitutive activation of mTOR
- Activation of mTOR signaling distinguishes type II from type I FCD

Figure 2.

Schematic depicting the hypothesis that a somatic mutation occurring within cells in a restricted brain area can lead to altered protein signaling and abnormal brain cytoarchitecture. The net effect of these changes leads to several possible neurologic manifestations including epilepsy, autism, and cognitive impairment. *Epilepsia* © ILAE

Tuberous Sclerosis Complex

Definite TSC: Two major OR one major + two minor

Probable TSC: One major + one minor

Possible TSC: One major feature OR two or more minor

Genetic diagnosis: A pathogenic variant in *TSC1* or *TSC2* is diagnostic for TSC (most TSC-causing variants are sequence variants that clearly prevent TSC1 or TSC2 protein production. Some variants compatible with protein production [e.g., some missense changes] are well established as disease-causing; other variant types should be considered with caution)

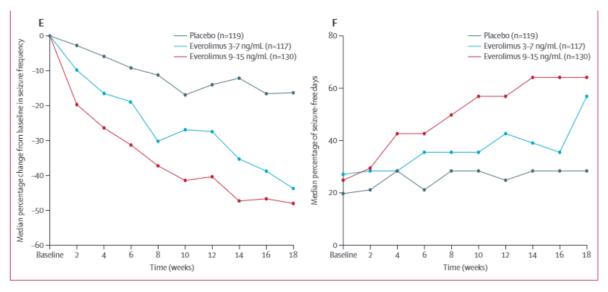
Major Features

- Facial angiofibromas or forehead plaque
- Ungual or periungual fibromas
- \geq 3 Hypomelanotic macules
- Shagreen patch
- Multiple retinal nodular hamartomas
- Cortical tuber
- Subependymal nodule (SEN)
- Subependymal giant cell astrocytoma
- Cardiac rhabdomyoma
- Lymphangiomyomatosis
- Renal angiomyolipoma

Minor Features

- Multiple randomly distributed pits in dental enamel
- Hamartomatous rectal polyps
- Bone cysts
- Cerebral white matter radial migration lines
- Gingival fibromas
- Nonrenal hamartoma
- Retinal achromic patch
- "Confetti" skin lesions
- Multiple renal cysts

Skin exam findings in TS



Tuberous Sclerosis Complex

PREVeNT Trial

- Early identification of EEG biomarkers
- Early treatment versus delayed treatment with vigabatrin
- Outcomes
 - developmental outcomes at 24 months
 - infantile spasms and refractory seizures
- Everolimus
 - Now approved for focal seizures associated with TSC

Figure 2: Seizure outcomes (A) Response rate by treatment group. Bars represent 95% Cls. (B) Median percentage reduction in seizure frequency by treatment group. Bars represent 95% Cls. (C) Distribution of reduction from baseline in seizure frequency by treatment group. (D) Response rate among various seizure types. Numbers on the x axis denote the number of patients with at least one occurrence of the seizure type during the baseline phase; bars represent 95% Cls. (E) Median percentage change from baseline in seizure frequency. (F) Median percentage of seizure-free days.

Sturge-Weber

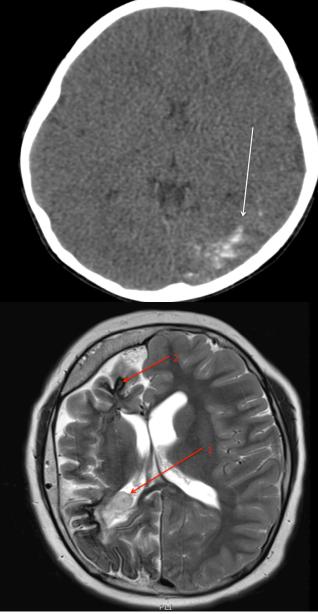
 Facial port-wine stain in the distribution of the <u>ophthalmic</u> branch of the trigeminal nerve (may be absent in 15% of Sturge-Weber syndrome patients); 26% with V1 have SWS (Ch'ng et al., 2008)

- Leptomeningeal angioma ipsilateral to the side of the port-wine stain, over occipital and posterior parietal regions predominantly, causing ischemia, atrophy and calcification in the affected cortex
- Ocular (choroidal, scleral) angioma (in 30% of patients), causing glaucoma, iris heterochromia, or buphthalmos.
- Seizures are seen in 75-90% of patients, usually starting at < 12 months; may also have hemiparesis, hemianopsia

https://www.epilepsydiagnosis.org/aeti ology/sturge-weber-overview.html

https://www.epilepsydiagnosis.org/aetiology/sturgeweber-imaging.html

nent:


- Surgical resection indicated in refractory epilepsy
- Ophthalmologic exam

*Sturge-Weber syndrome can be classified according to the presence/absence of facial and leptomeningeal angiomas:

- **type I**: represents classic syndrome, with both facial and leptomeningeal angiomas; may have glaucoma
- type II: facial angioma without evidence of intracranial disease; may have glaucoma
- **type III**: isolated leptomeningeal angioma; usually no glaucoma *Roach et al (1992)

Treatment:

Incontinentia Pigmenti

- X-linked dominant due to mutations in *IKBKG*
- Skin: erythema, blisters, boils (birth/ infancy) → wart-like verrucous lesions (birth/ infancy) → hyperpigmented lesions (6-12 months) → atrophic stage (pale/ hypopigmented and hairless)
- Dental abnormalities in 50-75%
- Nail abnormalities
- Ocular abnormalities in 1/3
- Neurological abnormalities in 1/3 (stroke, seizures, developmental delay)

https://rarediseases.org/rare-diseases/incontinentia-pigmenti

Nevus Sebaceous Syndrome (of Jadassohn)

- Postzygotic mutations in KRAS and HRAS (mosaic RAS mutations, regulating cell survival, proliferation, and differentiation) (Pan et al., BMC Med Gen. 2020;13:188)
- Hairless, yellow-orange plaques of varying sizes and shapes, and is most frequently located in areas with abundant sebaceous glands; ~7% have extracutaneous manifestations, primarily CNS (Davies et al., Austr J Dermatol. 2002;43(1):20-3; Chiang et al., Pediatr Neurosurg. 2019;54(3):201-6)
- Associated with seizures and various malformations of cortical development and other cerebral malformations (eg ACC)
- Other ocular, skeletal, craniofacial

Tumor - Epidemiology

 Proportion of incident epilepsy cases with brain tumors – 4-6%^{1, 2}

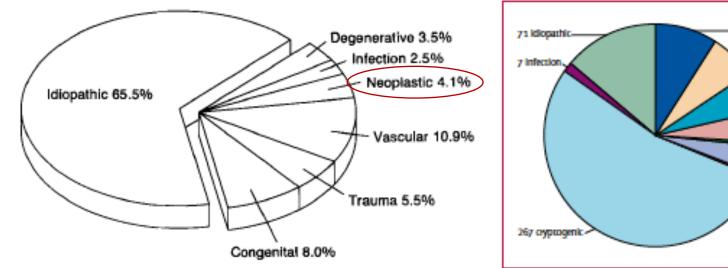


FIG. 2. Proportion of incidence cases (1935–1984) by etiology of epilepsy (all ages).

Figure 3: Distribution of causes of and risk factors for all (501) unprovoked setzures in iceland from 1995 to 1999 MR/CP-mental recardation/cerebral paby.

es cerebrovascular

33 degenerative

29 neoplasm

-23 tiauma

- 1. Hauser WA, Annegers JF, Kurland LT. Incidence of epilepsy and unprovoked seizures in Rochester, Minnesota: 1935-1984. Epilepsia 1993, 34: 453-68.
- 2. Olafsson E, Ludvigsson P, Gudmundsson G, et al. Incidence of unprovoked seizures and epilepsy in Iceland and assessment of the epilepsy syndrome classification: a prospective study. Lancet Neurol 2005, 4: 627-34.

Etiology according to age

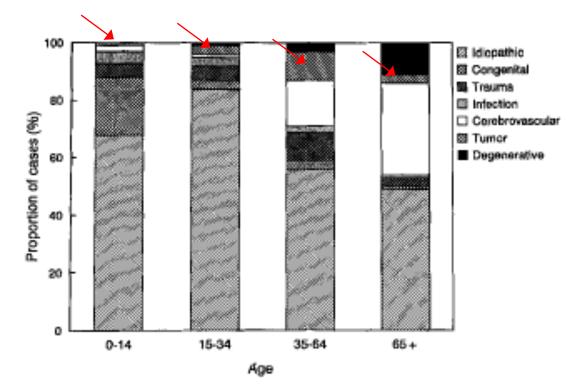


FIG. 10. Proportion of cases of newly diagnosed epilepsy assigned to specific etiologic categories within age groups, including idiopathic/cryptogenic category. Area: idiopathic (gray cross-hatched), congenital (dashed), trauma (dotted), trauma (widely dotted), infection (hatched), cerebrovascular (closely dotted), tumor (black), degenerative (light cross-hatch).

Seizure frequency according to tumor type

	Seizure frequency			
Dysembryoblastic neuroepithelial tumours11	100%			
Gangliogliomass	80-90%			
Low-grade astrocytoma ^{11,13}	75%			
Meningioma ^{s as}	29-60%			
Glioblastoma multiforme ^{s a}	29-49%			
Metastasis	20-35%			
Leptomeningeal tumour ^{aces}	10-15%			
Primary CNS lymphoma ¹⁴	10%			
Table 1: Association between tumour type and seizure frequency				

Van Breemen MS, Wilms EB, Vecht CJ. Epilepsy in patients with brain tumours: epidemiology, mechanisms, and management. Lancet Neurol 2007, 6: 421-30.

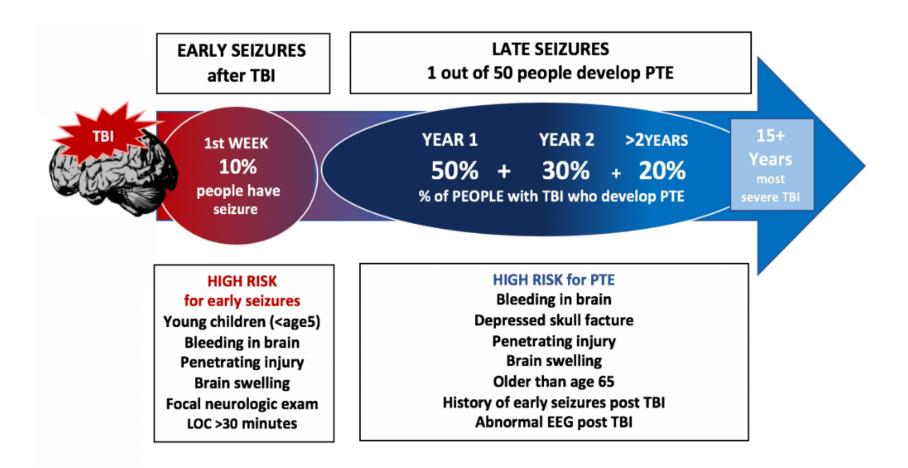
Seizure frequency according to tumor location

- Supratentorial 22-68% vs. infratentorial 6%
- Superficial/ cortical 63% vs. non-cortical/ deep 29%
- Parietal, temporal, frontal > occipital
- Increased seizure incidence with proximity to rolandic fissure

- 1. Recht LD, Glantz M. Neoplastic diseases. In: Engel J, Pedley TA, eds. Epilepsy: A Comprehensive Textbook. Philadelphia: Lippincott-Raven, 1998: 2579-85 (vol 3).
- 2. Lynam LM, Lyons MK, Drazkowski JF, et al. Frequency of seizures in patients with newly diagnosed brain tumors: A retrospective review. ClinNeurolNeurosurg 2007, 109: 634-8.

Epileptogenesis

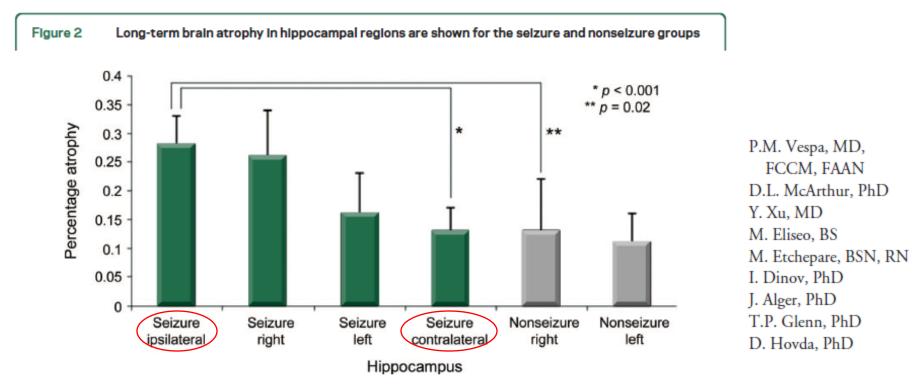
- Lesions are often electrically inert; epileptogenic activity probably arises from perilesional tissue
- Mirror focus actively discharging epileptiform region may induce similar activity in a homologous site


1. Wolf HK, Roos D, Blumcke I, et al. Perilesionalneurochemical changes in focal epilepsies. ActaNeuropathol 1996, 91: 376-84.

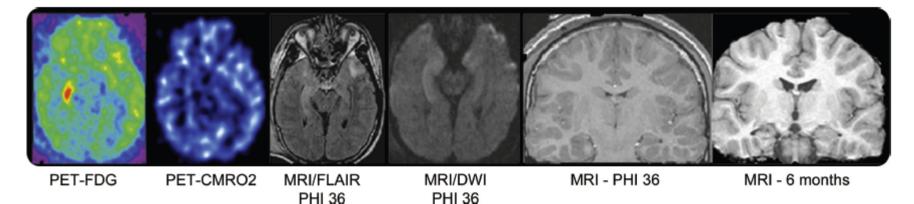
2. Gilmore R, Morris H 3rd, Van Ness PC, Gilmore-Pollak W, Estes M. Mirror focus: function of seizure frequency and influence on outcome after surgery. Epilepsia 1994, 35: 258-63.

Seizures after TBI

- Early (< 1 week)
- Late (> 1 week)



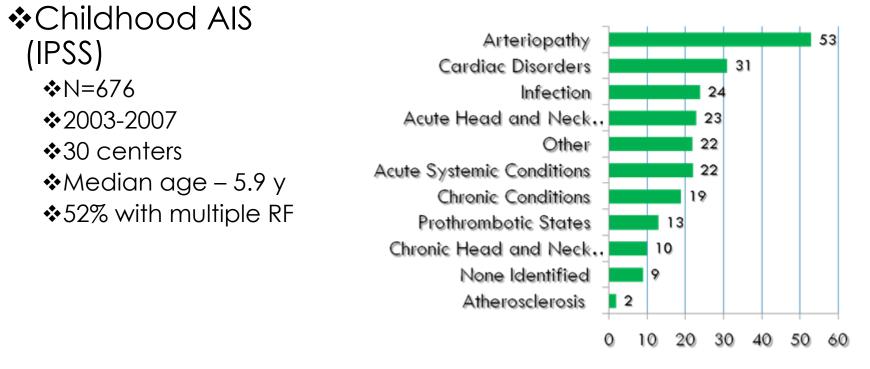
Nonconvulsive seizures after traumatic brain injury are associated with hippocampal atrophy


Neurology® 2010;75:792-798

	Global and hippocampal brain atrophy by group			
Atrophy	Seizure	Nonseizure	p Value	
Hippocampal	$\textbf{0.21} \pm \textbf{0.09}$	$\textbf{0.12} \pm \textbf{0.06}$	0.007	
Global	$\textbf{0.08} \pm \textbf{0.05}$	0.08 ± 0.03	0.907	

Bars are labeled by group (seizure, black; nonseizure, white) and by hippocampus location (right, left, ipsilateral or contralateral to the EEG seizure focus). There is greatest hippocampal atrophy in the seizure patients' hippocampi ipsilateral to the EEG seizure focus. The right hemisphere was ipsilateral to seizures more commonly than the left. Late hippo atrophy = percentage atrophy at 6 months as compared with the acute image.

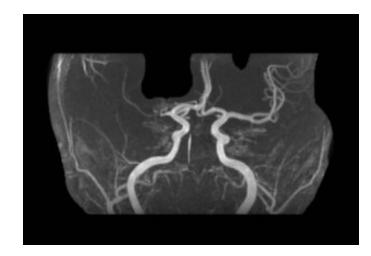
Figure 3 Hippocampal atrophy ipsilateral to the seizure focus

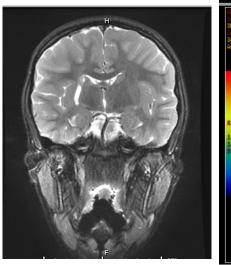


Composite of acute PET scan and acute and chronic MRI volumetric scans on seizure subject 4. The patient has increased glucose metabolism in the right hippocampus without a similar increase in CMRO2. The hyperintensity on the fluid-attenuated inversion recovery (FLAIR) sequence was due to acute seizure activity and not traumatic hemorrhage. MRI at 6 months shows right hippocampal atrophy and also right temporal lobe atrophy. CMRO2 = oxidative metabolism PET; FDG = fluorodeoxyglucose PET; PIH = postinjury hour.

Salmenperä T, Kälviäinen R, Partanen K, Pitkänen A. Quantitative MRI volumetry of the entorhinal cortex in temporal lobe epilepsy. Seizure 2000, 9: 208-215.

Risk Factors – Stroke in Children


Risk Factors


Percentage of Total Cases

Mackay MT, Wiznitzer M, Benedict SL, Lee KJ, Deveber GA, Ganesan V; International Pediatric Stroke Study Group. Arterial ischemic stroke risk factors: the International Pediatric Stroke Study. Ann Neurol. 2011

Focal Cerebral Arteriopathy

Infection

- Viral encephalitis
- Bacterial meningitis
- Abscess
- Neurocysticercosis
- Cerebral malaria
- TORCH infections (toxoplasmosis, rubella, CMV, HSV, Zika, etc)
- Tuberculosis
- HIV
- HSV
- Etc

Immune Etiology

- <u>ANTI-NMDA RECEPTOR ENCEPHALITIS</u>
- VOLTAGE-GATED POTASSIUM CHANNEL ANTIBODY
- <u>GAD65 ANTIBODY</u>
- GABA-B RECEPTOR ANTIBODY
- <u>AMPA RECEPTOR ANTIBODY</u>
- <u>STEROID-RESPONSIVE ENCEPHALOPATHY ASSOCIATED WITH</u>
 <u>THYROID DISEASE</u>
- <u>CELIAC DISEASE, EPILEPSY AND CEREBRAL CALCIFICATION</u>
 <u>SYNDROME</u>

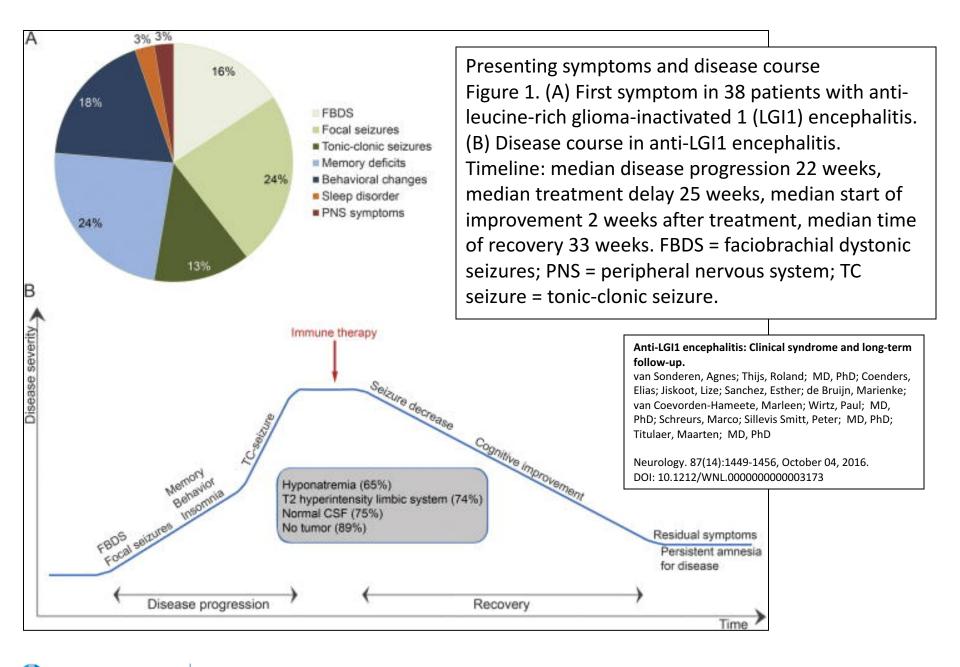
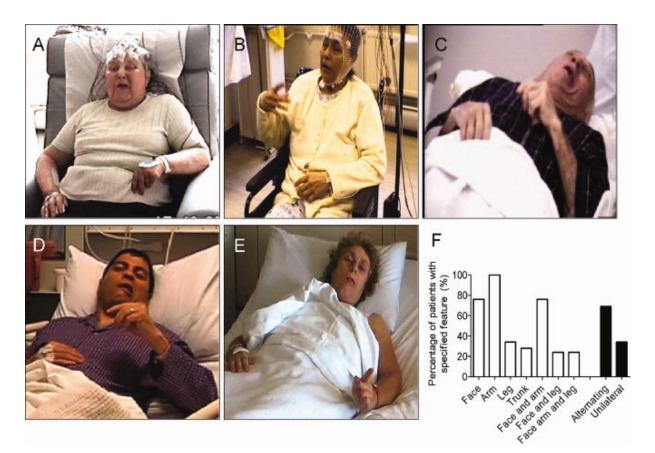

Epilepsydiagnosis.org

Table 3

Clinicoradiological characteristics of VGKC-complex, NMDA, GAD and AMPA antibody associated encephalitis. AED = Antiepileptic drugs; AMPAR = Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; CSF = Cerebrospinal fluid; CASPR2 = Contactin-associated protein2; CV2/CRAMP5 = Collapsin response mediator protein; CPS = Complex partial seizure; EEG = Electroencephalogram; FBDS = Faciobrachial dystonic seizures; GTC = Generalized tonic clonic; GABA = Gamma aminobutyric acid; GlyR = Glycine receptor; GluR = Glutamate receptor; GAD = Glutamic acid decarboxylase; LGI1 = Leucine-rich glioma inactivated1; MRI = Magnetic resonance imaging; MTL = Medial temporal lobe; NMDAR = N-methyl-D-aspartate; OCB = Oligoclonal bands; SE = Status epilepticus; SOX1 = Sex determining region Y-box 1; SPS = Stiff Person Syndrome; SCLC = Small cell lung cancer; T1DM = Type 1 diabetes; VGCC = Voltage gated calcium channel.

Characteristic features	LGI1>CASPR2 (VGKC-complex)	NMDAR	GAD	GABABR	AMPAR
Gender	M>F	F>M	F>M	M>F	F>M
Typical age group	>50 years	<40 years	>20 years	> 40 years	> 40 years
Neurological	Memory loss	Multistage encephalopathy	Memory loss	Memory loss	Amnesia
features	Confusion	with: Psychiatric	Temporal lobe seizures	Seizures	Seizures
	Temporal lobe	symptoms	Coexisting	Confusion	Insomnia
	seizures FBDS	Extratemporal seizures Movement disorders Autonomic instability Coma	autoimmune disorders including T1DM, SPS		Confusion
Psychiatric	Psychosis	Psychosis	Depression	Psychosis	Psychosis
Features	Personality	Behavioural disturbances	Anxiety	Hallucination	Confabulation
	changes	Delusions		Behavioural changes	Agitation
	Depression	Agitation		0	Personality changes
	Anxiety	-			
Characteristic	FBDS	GTC	GTC	CPS	GTC
seizures	CPS	SE	CPS	GTC	CPS
	GTC	CPS		SE	
				Focal motor	
Tumour association	Thymoma SCLC	Ovarian teratoma	SCLC	SCLC	Thymoma SCLC
Target antigen	LGI1 & CASPR2	NR1 subunit	GAD-65	GABABR	GluR1/2
MRI	High signal change	Normal although non-	Normal, although	Increased signal in MTL	Increased signal in MTI
	in MIL, less commonly basal ganglia	specific signal changes in medial temporal structures	increased signal in MTL	M	M
EEG	Focal or	Extreme delta brush, focal	Focal or generalized	Focal or generalized	Focal epileptic activity
	generalized	or diffuse delta/theta <	slowing	 epileptic activity 	
	slowing	activity		TINN	
Treatment &	Good response to	Responds slowly to	Poor treatment	Good response to	Relapses are common
outcome	immunotherapy	immune therapy	outcome with	immunotherapy	although there is good
			immunotherapy and		response to
			AEDs		immunothe rapy

O.D. Bakpa et al./Seizure 41 (2016) 26-41



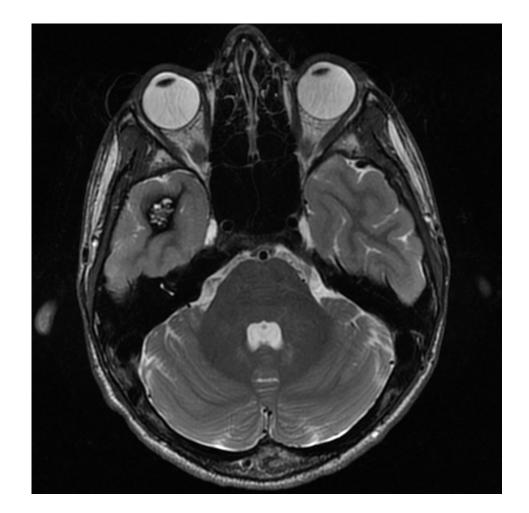
Wolters Kluwer

Health

OvidSP

Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis

Perinatal Insults


- Periventricular Leukomalacia
- •Intraventricular Hemorrhage
- •Hydrocephalus
- •Hypoxic-Ischemic Encephalopathy
- Stroke

Cavernoma

- 1% bleeding risk per year
- Familial CCM 50% asymptomatic

AVM

- 2-4% ICH risk per year
- Can be limited or catastrophic

IEM with seizures as a prominent feature

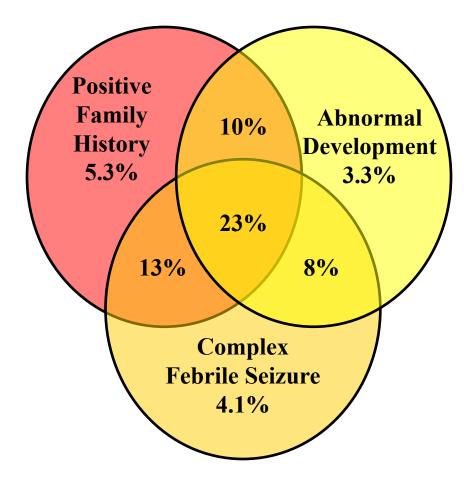
- Amino acid and organic acid disorders
- Glucose transport/ regulation disorders GLUT1, HI/HA, DEND
- Hyperhomocysteinemia cobalamin deficiencies, homocysteinuria, MTHFR deficiency
- Urea cycle disorders
- Fatty acid oxidation disorders
- Creatine synthesis/ transport disorders
- Neurotransmission biopterin deficiencies, SSADH-D
- Sulfite oxidase deficiency
- Vitamins/ co-factors: biotinidase, cerebral folate, holocarboxylase, molybdenum cofactor, pyridoxine, thiamine
- Mitochondria Co-Q10 deficiency, MELAS, PDH complex deficiency
- Metals Menkes
- Lysosomal and peroxisomal disorders

EPILEPSIES OF UNKNOWN CAUSE AND CONDITIONS WITH EPILEPTIC SEIZURES TRADITIONALLY NOT DIAGNOSED AS A FORM OF EPILEPSY

John M. Schreiber, MD Medical Director, EEG Children's National Health System

Febrile Seizures

- 2-5% of children (Hauser 1975, Nelson 1978, Offringa 1991) between 6 months and 60 months (5 years) of age (AAP guidelines)
- 10-20% risk in 1st degree family members
- Complex:
 - Duration > 15 minutes
 - Focal features
 - ≥ 2 in 24 hours


Nelson & Ellenberg. NEJM 1976, 295: 1029-1033.

Prognosis

- Overall, 1/3 have recurrence of FS
- ~10% have ≥3 FS
- Nelson & Ellenberg (1978):
 - 1% without risk factors will develop epilepsy by age 7
 - Compared to 10% with 2/3 risk factors complex, preexisting neurological abnormality, family history of afebrile seizures
- Annegers et al. (1987):
 - 2.4% with simple FS will develop epilepsy by age 25
 - 6-8% if complex (17-22% if 2 features, 49% if 3)
 - Generalized epilepsy a/w multiple FS and family history

Nelson & Ellenberg. Pediatrics 1978, 61: 720-727. Annegers et al. NEJM 1987, 316: 493-498.

Epilepsy after a Febrile Seizure?

- Other factors
 - Focal seizure
 - Todd's paralysis
 - Number of febrile seizures
 - Age of occurrence
 - Duration of febrile seizure
 - Duration of fever before seizure

FS+ and GEFS+

- Febrile Seizures Plus FS beyond 6 years old
- Genetic/ Generalized Epilepsy with Febrile Seizures Plus FS and afebrile seizures that may include various generalized or focal types
- >10-20% due to SCN1A, SCN1B, GABRG2, SCN2A, STX1B variants

Original pedigree

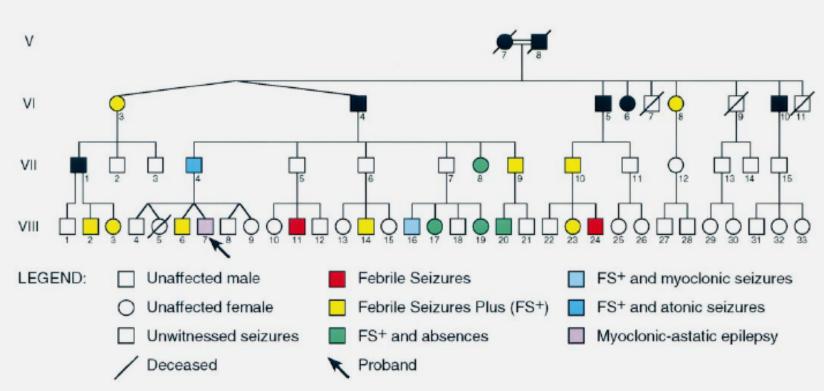
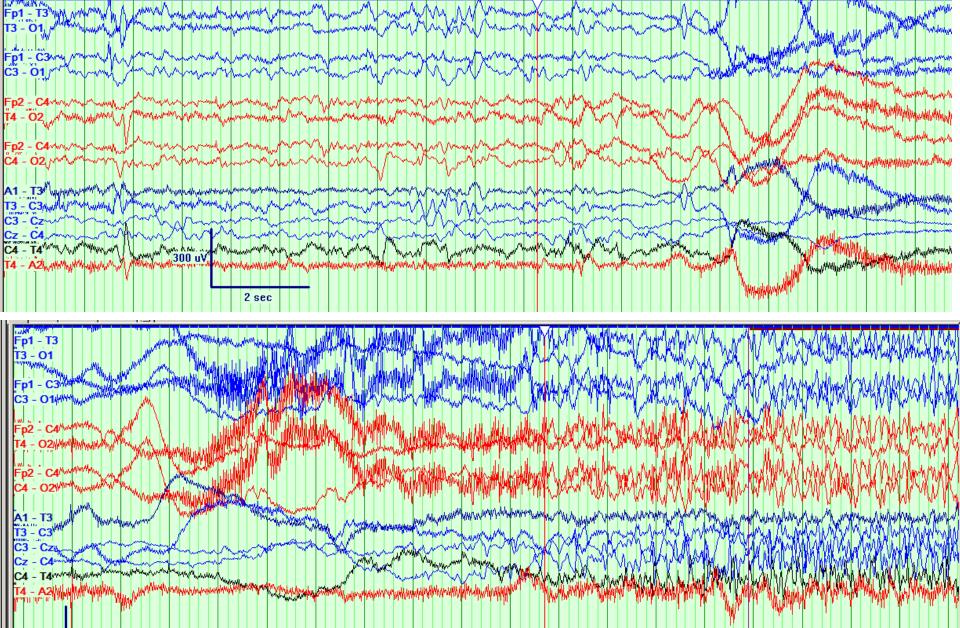
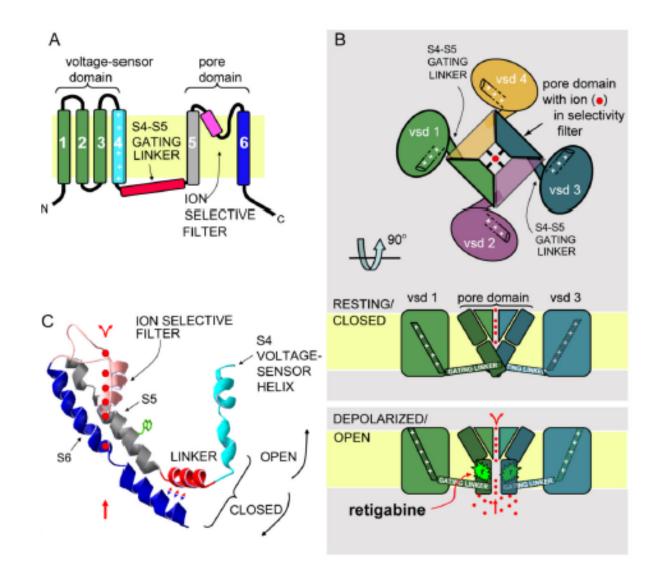



Fig. 4 Pedigree of the core family showing the heterogeneity of epilepsy phenotypes seen.

Scheffer & Berkovic, 1997


Benign Familial/ Non-Familial Neonatal Seizures

- "Fifth Day Fits"
- EEG background may be normal or abnormal
- Mutations in KCNQ2, or less commonly, KCNQ3
 - AD mutations, result in small reduction in current and less hyperpolarization
- Seizures clonic, tonic, apneas, orofacial automatisms
- Benign idiopathic neonatal seizures
 - Almost always clonic seizures, mostly partial ± apnea

300 uV

Voltage-gated potassium channel

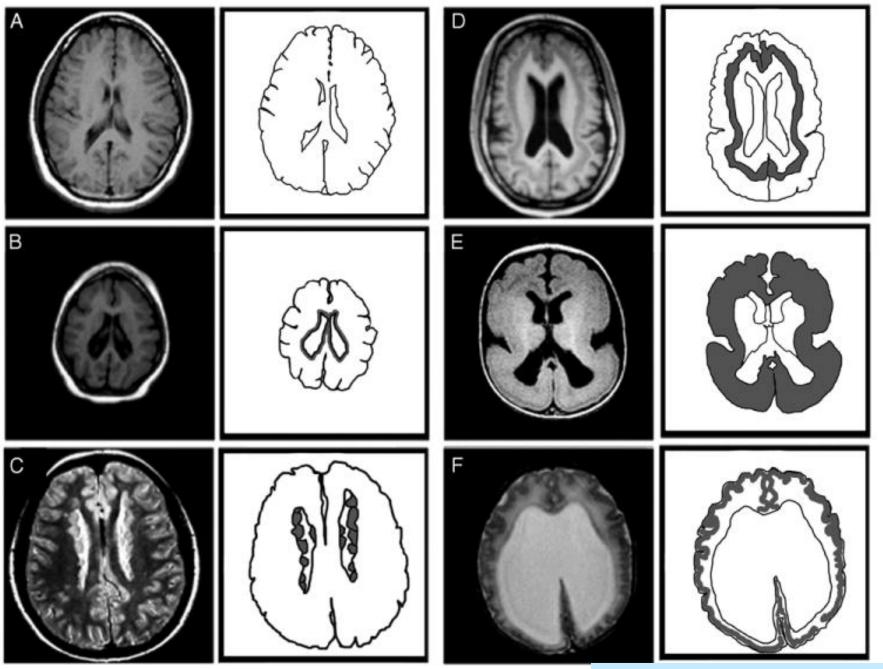
Cooper EC, in Jasper's Basic Mechanisms of the Epiilepsies, 4th Ed.

ILAE Proposed Epilepsy Classification

Table 3. Electroclinical syndromes and other epilepsies Electroclinical syndromes arranged by age at onset ^a Neonatal period Benign familial neonatal epilepsy (BFNE) Early myoclonic encephalopathy (EME) Ohtahara syndrome Infancy Epilepsy of infancy with migrating focal seizures West syndrome Myoclonic epilepsy in infancy (MEI) Benign familial infantile epilepsy Benign familial infantile epilepsy Dravet syndrome Myoclonic encephalopathy in nonprogressive disorders Childhood Febrile seizures plus (FS+) (can start in infancy) Panayiotopoulos syndrome Epilepsy with myoclonic atonic (previously astatic) seizures	Distinctive constellations Mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE with HS) Rasmussen syndrome Gelastic seizures with hypothalamic hamartoma Hemiconvulsion-hemiplegia-epilepsy Epilepsies that <i>do not</i> fit into any of these diagnostic categories can be distinguished first on the basis of the presence or absence of a known structural or metabolic condition (presumed cause) and then on the basis of the primary mode of seizure onset (generalized vs. focal) Epilepsies attributed to and organized by structural-metabolic causes Malformations of cortical development (hemimegalencephaly, heterotopias, etc.) Neurocutaneous syndromes (tuberous sclerosis complex, Sturge-Weber, etc.) Tumor Infection Trauma
Benign epilepsy with centrotemporal spikes (BECTS) Autosomal-dominant nocturnal frontal lobe epilepsy (ADNFLE) Late onset childhood occipital epilepsy (Gastaut type) Epilepsy with myoclonic absences Lennox-Gastaut syndrome	Angioma Perinatal insults Stroke
Epileptic encephalopathy with continuous spike-and-wave during sleep (CSWS) ^b Landau-Kleffner syndrome (LKS) Childhood absence epilepsy (CAE) Adolescence – Adult Juvenile absence epilepsy (JAE)	Etc. Epilepsies of unknown cause Conditions with epileptic seizures that are traditionally not diagnosed as a form of epilepsy per se Benign neonatal seizures (BNS) Febrile seizures (FS)
Juvenile myoclonic epilepsy (JME) Epilepsy with generalized tonic-clonic seizures alone Progressive myoclonus epilepsies (PME) Autosomal dominant epilepsy with auditory features (ADEAF) Other familial temporal lobe epilepsies Less specific age relationship	^a The arrangement of electroclinical syndromes does not reflect etiology. ^b Sometime referred to as Electrical Status Epilepticus during Slow Sleep (ESES).
Familial focal epilepsy with variable foci (childhood to adult) Reflex epilepsies	

THANK YOU

EXTRA SLIDES

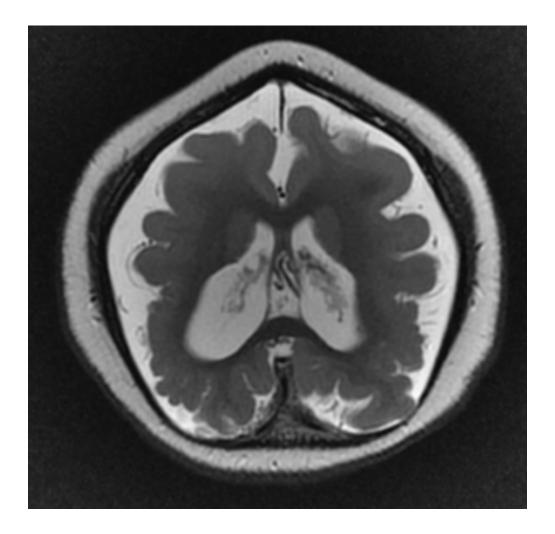

Brain 2012: 135; 1348-1369 1348

doi:10.1093/brain/aws019

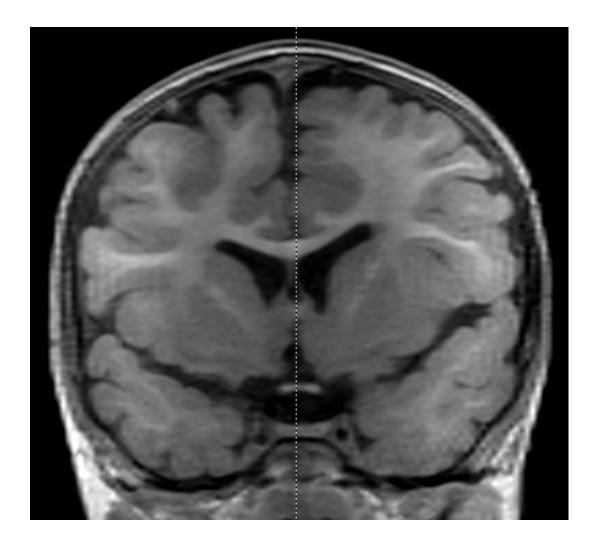
REVIEW ARTICLE A developmental and genetic classification for malformations of cortical development: update 2012

A. James Barkovich,¹ Renzo Guerrini,^{2,3} Ruben I. Kuzniecky,⁴ Graeme D. Jackson^{5,6} and William B. Dobyns^{7,8}

Brain 2012: 135; 1348-1369


Malformations due to abnormal neuronal and glial proliferation or apoptosis

- Severe congenital microcephaly (pre-migrational reduced proliferation or excess apoptosis)
 - ± IUGR, short stature, ID, ACC, other syndromic features, cortical malformations (genetic, other)
- Megalencephaly
 - ± PNH, PMG, other cortical dysgenesis (PTEN, Sotos)
- Cortical dysgenesis with abnormal cell proliferation but without neoplasia
 - Diffuse or focal/ multifocal (putative postzygotic mosaicism) FCD, HMEG
- Cortical dysplasias with abnormal cell proliferation and neoplasia
 - DNET, ganglioglioma, gangliocytoma


Malformations due to abnormal neuronal migration

- Nuroependymal abnormalities periventricular heterotopia
 - chromosomal deletions (Williams), FLNA (with ACC)
- Generalized abnormal transmantle migration (LIS/SBH)
 - DCX (Xq22.3-q23), LIS1 (classic 4 layer)
 - RELN (7q22), VLDLR (9q24)
- Localized abnormal late radial or tangential transmantle migration
 - Subcortical heterotopias, sublobar dysplasia
- Abnormal terminal migration and defects in pial limiting membrane
 - dystroglycan-laminin complex abnormalities, CDG, other cobblestone malformations, fetal alcohol syndrome

Lissencephaly

SEH – 20 mo with GDD

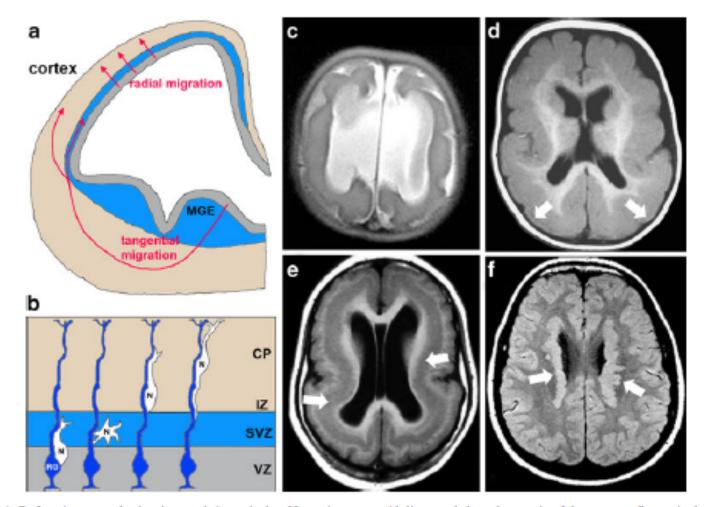


Fig. 1 Defects in neuronal migration result in cortical malformations. a The diagram of the coronal section of the developing cerebral cortex illustrates the migratory pathways of both excitatory neurons (radial) and inhibitory interneurons (tangential). Excitatory neurons and inhibitory neurons arise from the dorsal and ventral regions adjacent to the lateral ventricles, respectively. b In the cerebral cortex, newly born excitatory neurons (N) undergo a series of morphologic changes during migration along radial glial progenitors (RG). These alterations in neuronal morphology occur through changes of the cytoskeleton including microtubules and actin. c A T2-weighted image of an infant

with lissencephaly and agenesis of the corpus callosum is shown. The patient has a mutation in the ARX gene. d A patient with posteriorly predominant pachygyria (arrows) from a LISI mutation. e An MRI of a female patient with subcortical band heterotopia (arrows) due to a DCX mutation. f An MRI of a patient with bilateral periventricular nodular heterotopia (arrows) due to a FilaminA mutation. CP cortical plate; IZ intermediate zone; MGE medial ganglionic eminence; SVZ subventricular zone; VZ ventricular zone. (MRI panels adapted from Guerrini and Filippi [50]; with permission)

Malformations due to abnormal postmigrational development

- Polymicrogyria
 - Classified by location
 - Syndromes (Adams-Oliver, Joubert, Aicardi)
 - ± schizencephaly/ calcification (vascular, CMV, familial)
- IEM
 - Mitochondrial and pyruvate, NKH
 - Peroxisomal
- FCDs without dysmorphic neurons
- Postmigrational microcephaly
 - Pitt-Hopkins, FOXG1, Angelman, Rett